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Quantum field theory on a cone 

J S Dowker 
Department of Theoretical Physics, The University of Manchester, Manchester M13 9PL, 
UK 

Received 24 June 1976 

Abstract. The expressions derived by Sommerfeld and Carslaw for the Green functions and 
diffusion kernels in a wedge of arbitrary angle are shown to be useful in discussions of the 
Feynman Green function in Rindler space and other space-time metrics. 

1. Introduction 

The fact that the polar angle 4, on a plane say, is not a single-valued function of position 
leads to a number of formal difficulties. For example in quantum mechanics the 
definition of an angle operator 6 in a Hilbert space is impossible directly. Also in 
functional integrals it is most convenient to have all the variables running from --CO to 
+CO in order to apply Gaussian integrals. 

Of course on the plane it is always possible to use Cartesian coordinates so that one 
need not trouble about such questions. However, we ought to be able to use whatever 
coordinate system we like and this includes polar coordinates; and there may be 
occasions when angular coordinates are obligatory. 

These problems are well known and no doubt everyone who has thought about them 
will have their own approach. What I wish to give in this paper are some personal 
comments which others might like to consider. Mainly I wish to resurrect some old and 
apparently forgotten work of Sommerfeld (1897, see Frank and von Mises 1935, chap. 
20) and elaborated by others (e.g. Carslaw 1898, 1910, 1919). 

Sommerfeld’s general idea of using a Riemann surface has not been lost, of course, 
but I wish to draw attention to the precise analytical expressions derived by these 
authors as being particularly relevant for some topics of present day physics. 

The reason for this is that the polar coordinate form of the metric, 

d r2+r2  d 4 2  (1) 
occurs in a number of places. Of most interest for us is the fact that (1) is the Euclidean 
form of the ‘Rindler metric’ of two-dimensional Minkowski space-time, 

d s 2 = t 2  dv2-dz2 ( 2 )  
obtained by setting the ‘time’ U equal to i+ and z equal to r. 

If we are going to use this continuation we do not necessarily want to identify 4 and 
4 + 2 m  Rather we would like to make the periodicity arbitrary. If 4 and 4 + p  are 
identified then (1) describes the geometry on a cone of semi-angle s in-’(p/2~) ,  hence 
the title of this paper. 
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2. The quantum mechanical propagator 

We are particularly interested in quantum mechanics and quantum field theory on the 
cone. Thus we ask for the propagator Kp(r, 4, r‘, 4‘, T) which satisfies Schrodinger’s 
equation 

for 141 and 14’1 <p/2,  and has period p in the angle variables. 
If we set T + -iT we are considering diffusion and all we have to do is to read off the 

solution from Carslaw’s paper (1909). I give the result for p = 00 first, both in ‘series’ 
form, 

and as a contour integral, 

with r = (r, 4 j, r’ = (r’, 4’)  and p = (I; a). The contour A has two branches, one in the 
upper half a plane from ( + I +  rr - E )  + ico to (4’- 7r - E )  +io0 and the other in the lower 
half-plane from (r$’-rr+e)-ico to ( d ’ + r r + ~ ) - i m  (cf Carslaw 1919, figure 1). 

K,  is the propagator on Sommerfeld’s infinitely-sheeted Riemann surface (cf 
Franck and von Mises 1935, pp 821,839, 814). To obtain the propagator on the cone, 
one simply performs the periodicity sum 

where r,,, = (r, 4 + mp), which gives a quantity of period p (note that our p is twice 
Carslaw’s). 

The sum turns the Fourier integral in (4) into a Fourier series in the usual way, 

While the contour form (5) yields 

ei(p-r’)2/4~ e 
Kp (r, r’, T )  = - - e2rria/j3 - e2rriQ/p da, 

which is easily shown to be identical to (7) .  

exponentials in (8) (cf Bromwich 1915). 
As a minor point, note that a cotangent form could be substituted for the ratio of 

When p = 27r these expressions reduce to the standard propagator 

To obtain this from (8) the contour A is deformed into a loop around a = 4(14/ < T )  

and two vertical lines oppositely directed and a distance 2rr apart. These lines give equal 
and opposite contributions if the integrand has period 27r, which it does if fi  = 27,  and 
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we are left with (9) as the simple pole contribution at a = 6. (This is actually the reverse 
of the arguments used by Sommerfeld and Carslaw to motivate the form (8).) 

The line contributions also cancel if /3 is an integral fraction of 27r, p = 27r/p and we 
then get just the poles at a = q5 +2s7r/p, s = 0, *l, *2, . . . subject to a - 4 ' ~  7r (cf 
Bromwich 1915). This is the case in which the simple image device works for finding the 
propagator or Green function in a wedge of angle p/2 with Dirichlet or Neumann 
boundary conditions. 

When p is arbitrary this deformation of the contour in (8) will yield expression (9) 
plus a remainder which consists of the contributions of any other poles (there are none if 
p > 27r) and of the infinite lines. This remainder can be thought of as a non- 
perturbative contribution to K,. The reason for saying this is that the cone is locally flat, 
except at the apex, so that all the coefficients in the expansion of KP(7) in powers of T 
(the 'perturbation' expansion) are zero, apart from the first one. 

Because the cone is flat almost everywhere it might be imagined that the propagator 
should be represented as a 'sum over classical paths' with (9) as the leading (i.e. direct 
path) contribution. I would rather look upon equation (6), with (5), in this light. Thus 
expression ( 5 )  is the (exact) semi-classical propagator on the flat space A, and the 
periodicity sum (6) is a sum over classical paths on A, and gives the propagator on 
Ap = A&?,@) where Zm(p) is the infinite cyclic group with period p, and the division 
identifies points (r ,  4 + p )  and (r,  4 )  on A,. 

The manifold A, is simply connected while Ap has, in general, the fundamental 
group Z, if we do not allow paths to go through the apex of the cone, a singular point. 

The periodicity sum (6) is now just the expression for the propagator, Kp, on the 
multiply-connected space in terms of that, K,, on the universal covering space (Laidlaw 
and Morette-De Witt 1971, Schulman 1971, Dowker 1972). 

Strictly speaking this interpretation is incorrect for the special and isolated case 
when p = 27r for then Ap is the plane and is simply connected. However, since this 
exception is a set of measure zero we can let the interpretation stand for reasons of 
economy and continuity. 

In general one is allowed to have phase factors multiplying each term in the sum (6) 
(see the last references). Let us see what this freedom produces. Define the propagator 
43,s by 

ot 

Kp,6(r,  r', 7 )  = e2""'K,(rm, r', T )  

Then the equations corresponding to (7) and (8) are 
m = - m  

and 

When p = 27r expression (11) is, as expected, that which emerges from an exact 
solution for the Aharonov-Bohm set up (Aharonov and Bohm 1959, especially 9 4). 
There, the parameter 6 is the electromagnetic flux through the axis (cf the discussion in 
Schulman 1971, 1975). In general 6 will be related to the physical situation 'inside' the 
origin, r = 0. If there is no physics inside the origin, other than that producing the conical 
singularity, S will be zero. 
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3. Green functions 

In the works of Sommerfeld and Carslaw the cone, or wedge, was a real one and interest 
centred on diffusion in it or on the scattering of electromagnetic waves by it. My 
concern is not with these problems although one can quite easily set up quantum field 
theory in such a spatial wedge. It is straightforward to modify the results of Carslaw 
(1919) and MacDonald (1902, 1915) so as to give the Feynman Green function in the 
wedge, and related geometries. (This Green function also follows from the propagator 
K,(T) by treating T as a proper time.) It is then possible to calculate the vacuum average 
of the stress-energy tensor for example (Dowker, unpublished). 

I wish to dwell on the idea that the wedge-like geometry is the Euclidean form of a 
space-time geometry. This was briefly mentioned in 8 1, where the 'real' and 'Rindler' 
wedges were related by continuation. Interest centres on the Feynman Green function 
in the Rindler wedge. This can be obtained by continuation of the Green function in the 
Euclidean region which itself can be expressed as an integral over the diffusion kernel 
K, (-ir). 

The details of this continuation will be given since everything can be followed 
through explicitly. 

We use Rindler coordinates z and v rather than r and 4, and define the Green 
function G, (5) by 

where U - U' is real and f is a complex continuation variable (our f is i times that of 
Schwinger 1959). The contour C begins at the origin and ends at complex infinity. As f 
is changed we may have to deform C and A to give an analytical continuation of G, (5) 
from the diffusion start, f = 1, to the quantum mechanics finish, f = i. We could consider 
C and A to be dependent on f .  

There are two problems of convergence, one at r = CO and the other at r = 0. The 
latter is the most awkward requirement. The contour A must always run in regions of 
the at plane that make the integrand converge at 7 = 0. As f approaches i this severely 
constricts the contour C. 

Firstly consider the case p = 00 and enquire after the analytical structure of Gm(f). 
The integrand has a pole at cy' = f ( v  - u t ) .  If we choose C to be the positive real r axis the 
contour A must run in the shaded area of figure 1 for convergence at r = 0. As f varies 
G&) will be analytic at least until the pole at f ( v  - U') hits A, in which case the function 
Gm(f)  must be continued, if possible, by adjusting the contour C. This shifts the shaded 
region and allows the A contour to be deformed away from the pole. 

When Cis  the positive real r axis, the indicated A contour in figure 1 is the optimum 
one and leads to the corresponding G,(f) being analytic in the shaded region of figure 
2. 

As /U - u'I tends to zero, for a1 = 0, this region turns into the (smaller) double wedge 
area, t2- q 2  > 0, 5 = 5 + iq. This behaviour is expected since a1 = 0 means that the 
time-like contribution dominates the space-time interval. The gap on the imaginary 
axis in figure 2 is due to effect of the space-like contribution to the interval. 

If it is desired to reach a point that lies in the unshaded part of figure 2, i.e. if a 
continuation to a time-like separation is wanted, the contour C can be altered. Bearing 
in mind that we want to continue from f = 1 to f = i the C contour is rotated from the 
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Figure 1. Region of a‘ plane in which contour A must run for convergence at T = 0 if 
contour Cis along positive real T axis. The contour A‘ corresponds to that in equation (14). 
It C Q ~  run in the unshaded part but must pass below the branch point i a , =  
i ~ o s h - ’ ( z ~ + z ’ ~ / 2 z z ‘ )  and need not approach *io0 in the shaded region. The crosses 
indicate a typical series of poles (I’ = ( y  + mp, ( y  = v - U’). 

Figure 2. Domain of definition of the function G,(() in (plane for A contour as in figure 1. 

positive real axis almost to the positive imaginary one. In this limiting case the A 
contour must run in the shaded region in figure 3. Again, the contour indicated is the 
optimum one and gives the shaded area in figure 4 as the points at which the G&) is 
now defined. As Iz, - U’( tends to zero this region becomes the two quadrants, 67 > 0, as 
expected. 

If the 7 contour is rotated almost to the negative imaginary axis the pattern on the 
top of figure 3 is shifted by 7r to the right while that on the bottom is moved by the same 
amount to the left, and similarly for figure 4. This allows a continuation from = 1 to 
[ = -i. 

Figure 3. Same as figure 1 except that C has been rotated to almost the positive imaginary T 
axis, and the contour A refers to that in equation (15). The poles in the fourth quadrant are 
the reflections in the origin of those in the second and we have set equal to i. 
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Figure 4. Domain of definition of G,(l) for A as in figure 3. 

All this shows that we can extend the definition of the function G,(c) to the entire 6 
plane with the exception of the sections of the imaginary axis, *ia, to i[cosh-’(z’*+ 
z2/2zz’)]/1u - u’l, which can be considered to form the edges of a cut. 

The function of 2,  t’ U, U’ that we get by evaluating G&) at 5 = i is the Feynman 
Green function (e.g. Schwinger 1959). On figure 3 this corresponds to the points P and 
N, for positive and negative time differences, U - U’, respectively. 

The T integration in (13) can be performed to give the more explicit forms 

and 

for the C and A’ contours corresponding to figures 1 and 3 respectively. 
These expressions are closely related to the results of Carslaw (1919, especially 9 5 )  

and MacDonald (1902, 1915). 
The case of a general p now presents itself. The integrand of (13) has poles at 

a’ = [(U - U‘) + mp, m = 0, 1, 2 . . . , indicated typically by crosses in figure 1. 
The domain of definition in the 5 plane is now determined by requiring that as 

varies none of these poles hits the A contour. The resulting region can be obtained from 
that of figure 2 by excluding not only the unshaded part but also all its translates by 
mp/lu - U‘/. If p is smallish this produces a strip with scalloped edges between roughly 
I ta , / lu  - U’/ where a 1  is the beginning of the cut on the imaginary a’ axis. 

For the limiting case of figure 4, which is needed for a continuation to [= i ,  the 
domain of definition is obtained by translating the unshaded rectangular portions. If 
p < T this leaves only a thin strip around the real axis. In other words, as 5 varies from 
say 1 to i those poles lying originally between U - U’ and U - U‘- T (for convenience we 
take U - U ’  > 0) cannot avoid the upper A contour before 5 = i is reached. 

The conclusion is that for p < T this continuation to the Minkowski signature is not 
possible. It is allowed however if p > T in which case we find 

m 

= G&, z ’ ,  U, u’+imp), 
In=-, 

where G, is given by ( 1  5 )  with 5 = i. 
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Precisely what the significance of the value /3 = T is I am not certain and for the 

Equation (16) corresponds to the pre-image sum (6) and the remarks concerning 

We may note that for /3 = 21r, (16) yields the standard two-dimensional Feynman 

remainder of this paper I shall choose /3 > T. (But see the final paragraph of Q 5 . )  

classical paths etc can also be applied to (16). 

Green function 

GF(x,xf)= G , , , ( i ) = ~ H f ’ [ ~ ( ( x - ~ ~ ) ~ - i e ) ~ ’ ~ ] .  (17) 
Before discussing the significance of the result (16) I wish to re-arrange it slightly. 

The typical distribution of the poles of the integrand of (16) is indicated by the upper 
series of crosses in figure 3 for a positive time difference o - U’. Separating off the pole 
at P (corresponding to m = 0), those other poles to the right (left) of the imaginary axis 
are given by positive (negative) m and correspond precisely to the sum (16). 

This sum is now arranged to run over just positive m by setting a‘+ -a’ in the m < 0 
terms and using the symmetry of the integrand and contour A’. 

Geometrically the poles in the second quadrant have been reflected in the origin to 
give poles in the fourth quadrant at the complex conjugate points to those in the first 
one. 

An identical configuration results if U - U’ is negative so that this decomposition can 
be written in general 

io 

Ga(u)= G,(u)+ [Gz’(z:- imp)-G~’(u+imp)]  (18) 
m = l  

where G(*) are the positive and negative frequency parts of the Pauli-Jordan function, 
i.e. 

G,(u) = B(v)Gz’(u) - O(-v)G:’(v). 

The elementary rules for extending the time variable in Green functions into the 
complex plane have been discussed by Schwinger (1958,1959) and Nakano (1959). 

4. Finite-temperature Green functions: Fock space 

Equation (16) is identical to the result derived by Dowker and Critchley (1976a) for a 
finite-temperature Green function in a static space-time. (It should be said that this 
general result, for flat space, was briefly noted some time ago by Symanzik (1966).) 

In our units the constant temperature To is determined by the period /3 in imaginary 
time by kTo = p-’. 

The ‘particles’ that are in thermal equilibrium at the temperature To are those 
associated with the Fock space, the vacuum of which determines the zero-temperature 
Green function G, on the infinitely-sheeted manifold Ata in the usual way: 

This Green function is the ‘Rindler’ Green function and corresponds to the mode 
decomposition discussed by Fulling (1973, § IIB, see also Unruh 1976). An explicit 
eigenfunction evaluation of this Green function has been carried out by Candelas and 
Raine (1976) (cf Carslaw and Jaeger 1959, § 14.14). The associated particles are called 
‘Rindler’ particles. 
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The local temperature T i s  defined to be that measured by an observer situated at a 
fixed spatial point, defined by fixed values of the spatial coordinates. It is related to To 
by the Tolman relation T = To(goo)-1’2, (see e.g. Landau and Lifshitz 1958,O 27, Balazs 
1958). 

Physically in the present case where we identify 2 and v with Rindler coordinates an 
observer at constant 2 is moving with acceleration 2 - l  with respect to the Minkowski 
inertial frame (Rindler 1966) and so such an observer would measure a local tempera- 
ture of T = (acceleration)/kp. 

In the special case when p = 2 7 ~  (i.e. no conical singularity), for which G, is the 
conventional Feynman Green function (17), this result is just that of Davies (1975) but 
derived without the need for a reflecting wall. Unruh (1976) has also discussed this 
‘phenomenon’. 

These authors use mode decompositions and it is clear that the present method is a 
means of bypassing these expressions and the attendant Bogoliubov transformations 
(see Fulling 1973, § IIC). In fact the contour integral in (16) can be thought of as the 
Green function analogue of the Bogoliubov transformation. 

Unruh (1976) and Gibbons and Hawking (1975) would say that this result proves 
that an accelerated observer in flat space-time would see a thermal flux of particles with 
temperature T. The argument involves a gedanken construction with a particle detector 
but I do not wish to investigate this side of the discussion since I am more interested in 
the mathematical properties of the Green functions etc. 

Lest it be thought that our work is relevant for only the flat-space case I turn now to 
the Schwarzschild solution, already discussed by Gibbons and Perry (1976) from the 
finite-temperature Green function point of view. Some comments were also given in 
our earlier work (Dowker and Critchley 1976a). 

There are various ways of writing the Schwarzschild solution. I choose the following 
modification of the static form: 

(20) -ds2 = - 32M3 e-ri2M[ dz2  - ~ ’ d ( ~ ) ~ ]  + r2(df12+sin28 d42)  
r 4M 

because it incorporates a Rindler-like part. The variable f is the static time and z is 
related to r by 

2 = e x p ( r * / 4 ~ )  = ( r / 2 ~ -  I ) ” ~  e x p ( r / 4 ~ ) .  

A conical structure has now been exhibited in the Schwarzschild metric and the 
results of the previous sections are easily applied if we identify t/4M with v.  We shall not 
be able to give explicit expressions for the Green functions, because of the complicated 
radial equation, but the general structure of equation (16) will remain. 

Thus G, can be expressed in terms of G2* over a contour A’, 

because GZT(x, x ‘ )  is a function of t-t’ through only the combination z 2 + z f 2 -  
222’ cosh(t - t ’ / 4M) ,  as in the flat case. 

The periodic sum form of (21) is, as before, 
m 

G, ( t - t ’) = G,( t - t ’ - im 4Mp). 
m = - m  
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G, is the Feynman Green function on the manifold which is the continuation of 
Sommerfeld’s infinitely-sheeted space A,, extended by the extra variables 8 and 4, 
while Gp is the function on the extended continuation of the multiply-connected space 

If p = 27r (no conical singularity) GZT will be the ‘correct’ Feynman Green function 
on the Schwarzschild manifold and if interpreted as a finite-temperature Green 
function according to (22), will give the Hawking temperature To = ( 8 ? ~ k M ) - ~ .  G, is 
then to be thought of as the zero-temperature Green function and would result from an 
expression like (19) using the ‘naive’ static mode decomposition discussed by Unruh 
(1976, see also Fulling 1973). 

Exactly the same considerations apply to de Sitter space. The static form of the 
metric can be rewritten so as to display a Rindler-like part, 

A p  = JU,/Z,(P 1. 

ds2=3(1+t2)-2[z2 4 d(at)2-dz2]-~(1--L2)2(d82+sin2 0 dd2) 
a a 1+z2  

with 
1-ar  

2 2 = -  
1 + ar’ 

and so expressions virtually identical to (21) and (22) can be derived, the only difference 
being that (4M)-’ is replaced by a, the radius of the S i  hypersphere. 

In this case the Green function G2,, is that one calculated by a number of authors 
(e.g. Tagirov 1973, Candelas and Raine 1975, Dowker and Critchley 1976b) by a 
variety of methods and, precisely as above, will yield a temperature of To = a/257k if 
interpreted as a finite-temperature Green function. 

5. Discussion and conclusion 

The purpose of this paper was to indicate the relevance of some old work of Sommer- 
feld, and I feel that this has been accomplished. The relations between the various 
Green functions have been expressed as contour integrals and Carslaw’s periodicity 
sum has been equated to an expression for the finite-temperature Green function 
derived in an earlier paper. In particular the zero-temperature Green function is the 
function on a simply-connected infinitely-sheeted ‘Riemann surface’. The correspond- 
ing vacuum IO), is what Unruh (1976) would call the ‘7-vacuum’ while that one 
associated with GZv (the ‘correct’ Green function) is the ‘6-vacuum’. In the present 
approach the boundary conditions are built in. 

I should mention here that Fulling (1973) has given a discussion of the Fock spaces 
associated with manifolds that are multiply connected spatially (boxes with periodic 
boundary conditions). 

Only the mathematical expressions have been given here. I reserve applications and 
extensions for another time. 

Finally a technical ‘question mark’. When (15) was continued in 5 a difficulty arose 
for p < 7r because the A contour was restricted to lie in the shaded parts of figures 1 and 
3. However, the 7 integral can be done, for any p, if C is along the real positive 7 axis 
and 5 lies in the scalloped region. This yields an integrand involving KO and now, 
apparently, the restrictions on the A contour can be relaxed allowing the continuation 
in 5 with no problems. This yields equation (16) for any p. 
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